Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.

Identifieur interne : 002A41 ( Main/Exploration ); précédent : 002A40; suivant : 002A42

Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.

Auteurs : Benjamin Selles [France] ; Martin Hugo ; Madia Trujillo ; Vaibhav Srivastava ; Gunnar Wingsle ; Jean-Pierre Jacquot ; Rafael Radi ; Nicolas Rouhier

Source :

RBID : pubmed:22122405

Descripteurs français

English descriptors

Abstract

Gpxs (glutathione peroxidases) constitute a family of peroxidases, including selenocysteine- or cysteine-containing isoforms (SeCys-Gpx or Cys-Gpx), which are regenerated by glutathione or Trxs (thioredoxins) respectively. In the present paper we show new data concerning the substrates of poplar Gpx5 and the residues involved in its catalytic mechanism. The present study establishes the capacity of this Cys-Gpx to reduce peroxynitrite with a catalytic efficiency of 106 M-1·s-1. In PtGpx5 (poplar Gpx5; Pt is Populus trichocarpa), Glu79, which replaces the glutamine residue usually found in the Gpx catalytic tetrad, is likely to be involved in substrate selectivity. Although the redox midpoint potential of the Cys44-Cys92 disulfide bond and the pKa of Cys44 are not modified in the E79Q variant, it exhibited significantly improved kinetic parameters (Kperoxide and kcat) with tert-butyl hydroperoxide. The characterization of the monomeric Y151R variant demonstrated that PtGpx5 is not an obligate homodimer. Also, we show that the conserved Phe90 is important for Trx recognition and that Trx-mediated recycling of PtGpx5 occurs via the formation of a transient disulfide bond between the Trx catalytic cysteine residue and the Gpx5 resolving cysteine residue. Finally, we demonstrate that the conformational changes observed during the transition from the reduced to the oxidized form of PtGpx5 are primarily determined by the oxidation of the peroxidatic cysteine into sulfenic acid. Also, MS analysis of in-vitro-oxidized PtGpx5 demonstrated that the peroxidatic cysteine residue can be over-oxidized into sulfinic or sulfonic acids. This suggests that some isoforms could have dual functions potentially acting as hydrogen-peroxide- and peroxynitrite-scavenging systems and/or as mediators of peroxide signalling as proposed for 2-Cys peroxiredoxins.

DOI: 10.1042/BJ20111378
PubMed: 22122405


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.</title>
<author>
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR1136 Nancy University-INRA, Interactions Arbres-Microorganismes, IFR 110, EFABA 54506 Vandoeuvre-lès-Nancy cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR1136 Nancy University-INRA, Interactions Arbres-Microorganismes, IFR 110, EFABA 54506 Vandoeuvre-lès-Nancy cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hugo, Martin" sort="Hugo, Martin" uniqKey="Hugo M" first="Martin" last="Hugo">Martin Hugo</name>
</author>
<author>
<name sortKey="Trujillo, Madia" sort="Trujillo, Madia" uniqKey="Trujillo M" first="Madia" last="Trujillo">Madia Trujillo</name>
</author>
<author>
<name sortKey="Srivastava, Vaibhav" sort="Srivastava, Vaibhav" uniqKey="Srivastava V" first="Vaibhav" last="Srivastava">Vaibhav Srivastava</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Radi, Rafael" sort="Radi, Rafael" uniqKey="Radi R" first="Rafael" last="Radi">Rafael Radi</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22122405</idno>
<idno type="pmid">22122405</idno>
<idno type="doi">10.1042/BJ20111378</idno>
<idno type="wicri:Area/Main/Corpus">002C16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C16</idno>
<idno type="wicri:Area/Main/Curation">002C16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C16</idno>
<idno type="wicri:Area/Main/Exploration">002C16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.</title>
<author>
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR1136 Nancy University-INRA, Interactions Arbres-Microorganismes, IFR 110, EFABA 54506 Vandoeuvre-lès-Nancy cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR1136 Nancy University-INRA, Interactions Arbres-Microorganismes, IFR 110, EFABA 54506 Vandoeuvre-lès-Nancy cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hugo, Martin" sort="Hugo, Martin" uniqKey="Hugo M" first="Martin" last="Hugo">Martin Hugo</name>
</author>
<author>
<name sortKey="Trujillo, Madia" sort="Trujillo, Madia" uniqKey="Trujillo M" first="Madia" last="Trujillo">Madia Trujillo</name>
</author>
<author>
<name sortKey="Srivastava, Vaibhav" sort="Srivastava, Vaibhav" uniqKey="Srivastava V" first="Vaibhav" last="Srivastava">Vaibhav Srivastava</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Radi, Rafael" sort="Radi, Rafael" uniqKey="Radi R" first="Rafael" last="Radi">Rafael Radi</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="eISSN">1470-8728</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Dimerization (MeSH)</term>
<term>Glutathione Peroxidase (antagonists & inhibitors)</term>
<term>Glutathione Peroxidase (chemistry)</term>
<term>Glutathione Peroxidase (genetics)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (antagonists & inhibitors)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Peroxynitrous Acid (metabolism)</term>
<term>Plant Proteins (antagonists & inhibitors)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Recombinant Proteins (antagonists & inhibitors)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Sulfenic Acids (metabolism)</term>
<term>tert-Butylhydroperoxide (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>2-Hydroperoxy-2-méthyl-propane (métabolisme)</term>
<term>Acide peroxynitreux (métabolisme)</term>
<term>Acides sulféniques (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Dimérisation (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Glutathione peroxidase (antagonistes et inhibiteurs)</term>
<term>Glutathione peroxidase (composition chimique)</term>
<term>Glutathione peroxidase (génétique)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Oxidoreductases (antagonistes et inhibiteurs)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines recombinantes (antagonistes et inhibiteurs)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (antagonistes et inhibiteurs)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Structure quaternaire des protéines (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Glutathione Peroxidase</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Oxidoreductases</term>
<term>Peroxynitrous Acid</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Sulfenic Acids</term>
<term>tert-Butylhydroperoxide</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Glutathione peroxidase</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Glutathione peroxidase</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutathione peroxidase</term>
<term>Oxidoreductases</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>2-Hydroperoxy-2-méthyl-propane</term>
<term>Acide peroxynitreux</term>
<term>Acides sulféniques</term>
<term>Glutathione peroxidase</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Catalytic Domain</term>
<term>Dimerization</term>
<term>Kinetics</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Secondary</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Dimérisation</term>
<term>Domaine catalytique</term>
<term>Mutagenèse dirigée</term>
<term>Oxydoréduction</term>
<term>Spécificité du substrat</term>
<term>Structure quaternaire des protéines</term>
<term>Structure secondaire des protéines</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gpxs (glutathione peroxidases) constitute a family of peroxidases, including selenocysteine- or cysteine-containing isoforms (SeCys-Gpx or Cys-Gpx), which are regenerated by glutathione or Trxs (thioredoxins) respectively. In the present paper we show new data concerning the substrates of poplar Gpx5 and the residues involved in its catalytic mechanism. The present study establishes the capacity of this Cys-Gpx to reduce peroxynitrite with a catalytic efficiency of 106 M-1·s-1. In PtGpx5 (poplar Gpx5; Pt is Populus trichocarpa), Glu79, which replaces the glutamine residue usually found in the Gpx catalytic tetrad, is likely to be involved in substrate selectivity. Although the redox midpoint potential of the Cys44-Cys92 disulfide bond and the pKa of Cys44 are not modified in the E79Q variant, it exhibited significantly improved kinetic parameters (Kperoxide and kcat) with tert-butyl hydroperoxide. The characterization of the monomeric Y151R variant demonstrated that PtGpx5 is not an obligate homodimer. Also, we show that the conserved Phe90 is important for Trx recognition and that Trx-mediated recycling of PtGpx5 occurs via the formation of a transient disulfide bond between the Trx catalytic cysteine residue and the Gpx5 resolving cysteine residue. Finally, we demonstrate that the conformational changes observed during the transition from the reduced to the oxidized form of PtGpx5 are primarily determined by the oxidation of the peroxidatic cysteine into sulfenic acid. Also, MS analysis of in-vitro-oxidized PtGpx5 demonstrated that the peroxidatic cysteine residue can be over-oxidized into sulfinic or sulfonic acids. This suggests that some isoforms could have dual functions potentially acting as hydrogen-peroxide- and peroxynitrite-scavenging systems and/or as mediators of peroxide signalling as proposed for 2-Cys peroxiredoxins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22122405</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1470-8728</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>442</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.</ArticleTitle>
<Pagination>
<MedlinePgn>369-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/BJ20111378</ELocationID>
<Abstract>
<AbstractText>Gpxs (glutathione peroxidases) constitute a family of peroxidases, including selenocysteine- or cysteine-containing isoforms (SeCys-Gpx or Cys-Gpx), which are regenerated by glutathione or Trxs (thioredoxins) respectively. In the present paper we show new data concerning the substrates of poplar Gpx5 and the residues involved in its catalytic mechanism. The present study establishes the capacity of this Cys-Gpx to reduce peroxynitrite with a catalytic efficiency of 106 M-1·s-1. In PtGpx5 (poplar Gpx5; Pt is Populus trichocarpa), Glu79, which replaces the glutamine residue usually found in the Gpx catalytic tetrad, is likely to be involved in substrate selectivity. Although the redox midpoint potential of the Cys44-Cys92 disulfide bond and the pKa of Cys44 are not modified in the E79Q variant, it exhibited significantly improved kinetic parameters (Kperoxide and kcat) with tert-butyl hydroperoxide. The characterization of the monomeric Y151R variant demonstrated that PtGpx5 is not an obligate homodimer. Also, we show that the conserved Phe90 is important for Trx recognition and that Trx-mediated recycling of PtGpx5 occurs via the formation of a transient disulfide bond between the Trx catalytic cysteine residue and the Gpx5 resolving cysteine residue. Finally, we demonstrate that the conformational changes observed during the transition from the reduced to the oxidized form of PtGpx5 are primarily determined by the oxidation of the peroxidatic cysteine into sulfenic acid. Also, MS analysis of in-vitro-oxidized PtGpx5 demonstrated that the peroxidatic cysteine residue can be over-oxidized into sulfinic or sulfonic acids. This suggests that some isoforms could have dual functions potentially acting as hydrogen-peroxide- and peroxynitrite-scavenging systems and/or as mediators of peroxide signalling as proposed for 2-Cys peroxiredoxins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Selles</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>UMR1136 Nancy University-INRA, Interactions Arbres-Microorganismes, IFR 110, EFABA 54506 Vandoeuvre-lès-Nancy cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hugo</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trujillo</LastName>
<ForeName>Madia</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Srivastava</LastName>
<ForeName>Vaibhav</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wingsle</LastName>
<ForeName>Gunnar</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Radi</LastName>
<ForeName>Rafael</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013434">Sulfenic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>14691-52-2</RegistryNumber>
<NameOfSubstance UI="D030421">Peroxynitrous Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>955VYL842B</RegistryNumber>
<NameOfSubstance UI="D020122">tert-Butylhydroperoxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="C080439">selenium-independent glutathione peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.7.99.-</RegistryNumber>
<NameOfSubstance UI="C109110">peroxynitrite reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030421" MajorTopicYN="N">Peroxynitrous Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013434" MajorTopicYN="N">Sulfenic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020122" MajorTopicYN="N">tert-Butylhydroperoxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22122405</ArticleId>
<ArticleId IdType="pii">BJ20111378</ArticleId>
<ArticleId IdType="doi">10.1042/BJ20111378</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Vandœuvre-lès-Nancy</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Hugo, Martin" sort="Hugo, Martin" uniqKey="Hugo M" first="Martin" last="Hugo">Martin Hugo</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Radi, Rafael" sort="Radi, Rafael" uniqKey="Radi R" first="Rafael" last="Radi">Rafael Radi</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<name sortKey="Srivastava, Vaibhav" sort="Srivastava, Vaibhav" uniqKey="Srivastava V" first="Vaibhav" last="Srivastava">Vaibhav Srivastava</name>
<name sortKey="Trujillo, Madia" sort="Trujillo, Madia" uniqKey="Trujillo M" first="Madia" last="Trujillo">Madia Trujillo</name>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22122405
   |texte=   Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22122405" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020